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ABSTRACT

We propose a spintronic device based on a narrow nanoribbon patterned from a monolayer graphene (MLG) sheet, embedded between a film
of hexagonal boron nitride and a SiO2 substrate, all comprised under a three top-gated structure, to explore spin-dependent quantum transport
of Dirac fermions. We developed a theoretical procedure for describing the pseudospin-related effects and the dynamics of Dirac fermions rep-
resented by a one-dimensional Gaussian wave packet (1DGWP), which is electrostatically confined in the device. The free-space 1DGWP time
evolution follows expected features. Meanwhile, due to the weak breakdown of the real-spin degeneracy, the 1DGWP barely splits inside the
under-barrier region governed by the extrinsic Rashba spin–orbit interaction (SOI-R). Most importantly, departing from the pristine MLG, we
have found evidence of trembling antiphase oscillations in the probability density time-distribution for each sublattice state, which we have
called the pseudospinorial Zitterbewegung effect (PZBE). The PZBE appears modulated with robust transient character and with a decay time
in the femtosecond scale. Interestingly, several features of the PZBE become tunable, even its complete disappearance at the vicinity of the
Dirac points or at a symmetric pseudospin configuration. For the proposed quasi-1D MLG device, we have captured evidence of the familiar
Klein tunneling and the unusual anti-Klein tunneling, whose interplay for 2D MLG under tunable SOI-R was reported recently.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5078642

I. INTRODUCTION

In the last few decades, graphene has been shown to be a
material with very useful properties for spintronics. Intensive
studies were addressed to this topic, looking for the miniaturiza-
tion of, as well as for the improvement in the efficiency of,
graphene-based devices, taking advantage of the material’s low-
energy excitation1 and better energetic exploitation.2 Other intrigu-
ing characteristics of graphene are its chirality, gapless spectrum,
and spin-charge carriers that mimic massless relativistic particles
called Dirac fermions.3–5

Since the early elucidation by Schrödinger,6 back in the age of
the rise of quantum mechanics, the free-space relativistic-electron
“trembling motion” is still one of the relevant anomalous phenomena

present in solid materials, and being somewhat puzzling, remains yet
cryptic to detect experimentally. According to Schrödinger, the
relativistic-electron position experiences rapid periodic oscillations,
which he called the Zitterbewegung effect (ZBE). However, years later,
several aspects were reexamined by Dirac7 and the average quantities
over the Compton scale had to be invoked to recover meaningful
results.8,9 On the contrary, it has been demonstrated that
relativistic-electron spatial localization can be narrower than the
Compton wavelength, together with the lack of any ZBE, because
the pair e� � eþ interaction is forbidden by the relativistic
quantum-field theory.10 These outstanding pioneering works6,7

have inspired a large number of theoretical studies in different
physical systems, for instance, in semiconductors11,12 (and the
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references therein), and in graphene,1,8,13,14 pursuing a deeper
insight into the experimentally evasive ZBE.

Several low-dimensional materials such as silicene, germanene,
and dichalcogenides seem more promising than graphene in demon-
strating spin–orbit effects, mostly due to their spectrum properties at
the vicinity of high symmetry points.2 Thus, creating a strong Rashba
spin–orbit interaction (SOI-R) in graphene is universally agreed as a
challenging task. Nevertheless, a lot of effort has gone into developing
reliable routes to spin-dependent appliances in aspects other than the
enhanced SOI-R strength.2,3 For example, by testing the existence of
spin-orbit coupling (SOC) in graphene, it was demonstrated that the
material had an extremely weak SOC with the absence of hyperfine
interaction.3 The authors concluded that these properties turn gra-
phene into an excellent if not an ideal material for spin-qbits and in
this way guarantee reliable graphene-based quantum computing.3

Meanwhile, this and other related questions have also been reviewed
in other studies,2,15,16 which reproduced similar features for the
SOI-R, which makes graphene a very good candidate to be used in
the management of qbits. Besides, there is a belief that there could
exist an interplay between the ZBE and the SOI-R,9 following the
dependence of the ZBE on the strength of SOI-R in III–V semicon-
ducting quantum wells.

We get motivated by the mere fact that somewhat exotic
quantum electrodynamics (QED) phenomena such as the Klein
(anti-Klein) tunneling and the ZBE—which cannot be observable
for nonrelativistic particles—could arise in such nonstandard
geometry as the one sketched in Fig. 2 for a monolayer graphene
(MLG) nanoribbon. In this context, our theoretical approach for
describing quasi-one-dimensional (Q1D) Dirac fermions’
quantum motion in the envisioned device could contribute to a
better understanding of the pseudospinorial Zitterbewegung effect

(PZBE) that we have found and of the other pseudospin-related
properties of the Q1D MLG. This is the main purpose of the
present study. We hope that this attempt would be scientifically
sound enough to generate interest, from both the fundamental
and the technological standpoints. As a collateral goal, we would
like to focus on the question whether a weak SOI-R creates any
benchmark when the Q1D Dirac fermions interact with a
quantum potential barrier (QB).

The remaining part of this paper is organized as follows: Sec. II
presents the physical model under study regarding the proposed
device structure. Section III explains briefly the theoretical approach
and the mathematical tools to solve it. Further numerical results are
discussed in Sec. IV. Finally, in Sec. V, we sum up.

II. PHYSICAL MODEL

The MLG is composed by a semiflat single-carbon-atom sheet,
with a honeycomblike lattice (see Fig. 1). The specific MLG struc-
ture, which fairly reproduces the envisioned system of the present
study, is depicted in Fig. 1 and can be described by a triangular
lattice with a basis of two atoms per unit cell. Accordingly, the
unit-cell vectors are ~a1 ¼ a0(1, 0) and ~a2 ¼ a0=2(1,

ffiffiffi
3

p
),4 which

generate the unit-cell vectors of the Brillouin Zone (BZ) that are
given by ~b1 ¼ 4π=(2a0

ffiffiffi
3

p
)(

ffiffiffi
3

p
, � 1) and ~b2 ¼ 4π=(a0

ffiffiffi
3

p
)(0, 1),

with a0 ¼
ffiffiffi
3

p
a, where a � 1:42A

�
is the carbon–carbon distance.

From the BZ represented in Fig. 1, we can find Dirac’s points allo-
cated at the following (kx , ky) pair coordinates of the reciprocal
lattice: K ¼ (0, 0); and K

0 ¼ + 8π=3a0, 0ð Þ.
The most common and reliable configuration for device

setups, based upon two-dimensional (2D) MLG, few-layers gra-
phebe (FLG), and nanotubes, is made with an insulating SiO2

FIG. 1. Monolayer graphene lattice
and its Brillouin Zone. Left panel: the
sublattice sites for atoms A and B,
whereas ~a1 and ~a2 are the lattice unit
vectors. Right panel: a standardized
view for the Brillouin Zone. Dirac’s
points K(K

0
) allocation is referred to

the high-symmetry Γ point, whose
coordinates are kx ¼ +(4π=3a0) and
ky ¼ 0.
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substrate often attached to a silicon wafer.17–19 What the experi-
ments have shown unequivocally is that although the 2D MLG
primarily follows the underlying morphology of SiO2, the gra-
phene sheet due to its intrinsic stiffness does not become
completely conformed to the substrate.17 On the other hand, it
has been recently reported that the hexagonal boron nitride
(hBN) matches with graphene better than other candidates
because of a lattice mismatch of only 1:5% between them, thus
allowing graphene to preserve its morphological, optical, and
electronic properties.20

Figure 2 shows the schematic setup of the spintronic device
that we introduced as the envisioned physical system to be studied
in the present work. The device’s Q1D quantum channel is a
narrow nanoribbon (middle yellow strip) lithographically pat-
terned from a 2D MLG sheet (red), embedded between a film of
hBN (transparent gray) and a SiO2 substrate (green), all com-
prised under a three top-gated structure. At this point, it is worth-
while to remark that gating has been an essential tool to unveil
the exotic and unprecedented phenomena in graphene. With
gating, it is possible to tune the Fermi energy as well as to create
potential barriers in graphene.21,22 The Dirac-fermion quantum
motion is biased into the Q1D nanoribbon (along the x direction)
by two top voltage gates represented with plates A and B (blue),
whereas the third top voltage gate, shown as plate Vb (blue),
creates an arbitrary square-potential quantum barrier (QB)
located at almost a quarter of the quantum-channel right border
(see Fig. 3). Within the under-QB space, the locally-induced
SOI-R coupling is electrostatically tuned. This way we are able to
explore pseudospin-related effects, and the dynamics of Dirac fer-
mions betoken as a one-dimensional Gaussian wave packet
(1DGWP) drift in the free-space region, as well as inside the scat-
terer, with a group velocity of two orders less than light speed.15

Figure 3 depicts an instance of this phenomenology.

III. THEORETICAL AND MATHEMATICAL OUTLINES

A. Pristine graphene

We have assumed free massless Dirac fermions at low ener-
gies. Then, near the K(K 0) points, the pristine MLG Dirac-like
Hamiltonian becomes

Ĥ0 ¼ vF~σ �~p, (1)

with ~σ ¼ σ̂xîþ σ̂y ĵ being the pseudospin Pauli matrices

σ̂x ¼
� 0 1
1 0

�
, σ̂y ¼

� 0 �i
i 0

�
, and ~p ¼ p̂x îþ p̂y ĵ, the momen-

tum operator, whose x, y components read p̂x ¼ �i�h @
@x and

p̂y ¼ �i�h @
@y, respectively. Hereinafter, vF stands for the Fermi

velocity of the carriers in MLG, which satisfies

vF � c
300

: (2)

In particular, this means that, on general grounds, for the QED
specific phenomena of our interest (PZBE, Klein, and anti-Klein
tunneling), the pseudospin-related effects should prevail those
with a real spin dependency.3 Finally, the dispersion law has the
widely-known form E ¼ +j�hkjvF, where + refers to the electron
(hole) band. Another striking characteristic of the MLG is the
well-known chirality or helicity. Indeed, the momentum opera-
tor for the Dirac fermions in sublattice A has a preferential set-
tling of its projection along the pseudospin direction, while for
the Dirac fermions in sublattice B, it is found completely oppo-
site. For this reason, the pseudospinor is a two-component state
of the form,

Ψ(x, t) ¼ ψA(x, t)
ψB(x, t)

� �
: (3)

FIG. 3. Physical system in its initial state t ¼ 0 fs, where the green solid line
represents a potential barrier [with V (x) = 0 eV only in the interval x [
[700, 800] A

�
and V (x) ¼ 0 eV elsewhere]. The solid red line is the probability

density of the A component of (3), the dashed blue line is for the B component
of (3), while the dotted purple one is the sum of both components of the
pseudospinor.

FIG. 2. Diagrammatic representation of the setup displaying a 3D-perspective
view of the proposed spintronic device. Two-dimensional monolayer graphene
surface (red), with a lithographically printed narrow nanoribbon (middle yellow
strip) sandwiched by a film of hexagonal boron nitride (hBN, transparent
gray) and a silicon dioxide (SiO2, green) substrate. The Dirac-fermion
quantum motion is biased into the quasi-one-dimensional nanoribbon (along
the x direction) by top voltage gates represented with plates A and B (blue).
Whereas the third top voltage gate, shown as plate Vb (blue), creates the
quantum potential barrier, under which the locally-induced SOI-R coupling is
manipulated.
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B. Rashba spin–orbit interaction

Very precise atomic-resolution scanning-tunneling microscopy
images revealed, for the first time, the presence of a strong spatially-
dependent perturbation, which breaks the hexagonal lattice symme-
try of a 2D MLG, supported by a SiO2 substrate.

17 This experimental
evidence has shown that the strain-induced corrugations break the
2D honeycomb lattice configuration of the 2D MLG and thus may
explicitly produce a short-range localized structural inversion asym-
metry (SIA), causing the extrinsic SOI-R to arise. Besides, an acci-
dental doping in the SiO2 substrate (due to, for example, the
presence of atmospheric species) may also provoke lattice asymme-
tries, which yield SOI-R via Stark interaction with the impurities.15

Even by optimizing the SiO2 substrate upon which the 2D MLG is
deposited to conform the test device (see Fig. 2), the Rashba term
can be dominant.23 Another viable scenario for a locally-induced
SOI-R is to add light adatoms such as hydrogen. This atmospheric
component, even within the dilute limit, is a good precursor of
enhanced SOI-R effects in graphene, which as an added bonus do
not sensibly modify the zero gap Dirac cones spectrum.2 The
authors of the quantitative measures demonstrating locally-spaced
extrinsic-induced SIA17 share the opinion that these kinds of experi-
mental support can be used as inputs to theoretical models to study
the effects of SOI-R on quantum transport properties.17 In short, if
space inversion symmetry of graphene is broken by the substrate,
external electric fields, or adatoms, the SOI-R appears.2

On the other hand, the SOI-R in graphene was also considered
reachable with standard gating.15 So, in principle, the top-gated
device proposed in Fig. 2 could perfectly induce SOI-R. Once we
adopt gating, the fact is that graphene is no longer pristine and the
Hamiltonian (1) needs to be complemented with two contributions,
namely, intrinsic SOC and extrinsic SOI.15,23–25 There is another
significant issue to be considered, which is the band-structure topol-
ogy of graphene with SOC. Touching Dirac cones exist only for
pristine graphene whenever the SOC is neglected. As long as it is
present, the orbital degeneracy at the Dirac points is lifted and the
SOC gap appears.26 It is interesting to observe SOI effects in a Q1D
MLG nanoribbon of the device shown in Fig. 2, but without
destroying the structure of pristine graphene Dirac cones much. It is
then necessary to fix the external electric field to certain values, at
which the intrinsic and extrinsic Bychkov–Rashba SOC parameters
are equal (λI ¼ λR, respectively). Then, two bands with the same
pseudospin index form touching Dirac cones again, still preserving
the linear dispersion law;2,26 meanwhile, the other two remain
apart. In fact, it is more convenient to assume the case when
λR . λI , which allows us to neglect the intrinsic SOC. So, the com-
bined Hamiltonian can be written as26

ĤMLG ¼ Ĥ0þ ĤBR ¼ vF ησ̂xpx þ σ̂ypy
� �þ λR ησ̂xSy � σ̂ySx

� �
, (4)

where the second term represents the extrinsic SOC of Bychkov–
Rashba,26 Sx,y stands for the real spin Pauli matrices, and η¼+1 is
taken for the cones at K(K 0), respectively. Equation (4) has been
commonly applied for 2D MLG or graphene-based 2D systems.26,27

In our case, we are considering a Q1D system as the one given in
Fig. 2, and no Hamiltonian has been reported yet that accounts for
the SOI-R for a Q1D MLG nanoribbon, as far as we know.

By considering the striking experimental detection of heavy
holes (hh), with an effective mass of mhh � 0:1mo via Shubnikov–de
Haas oscillations in a system of FLG,21 we are assuming that the
momentum-dependent term of the well-known Rashba Hamiltonian
for Q1D semiconductor heterostructures28,29 can be extended to the
context of Q1D graphene structures. To what extent this assumption
is correct will depend on a formal derivation of the corresponding
Hamiltonian under the geometrical and structural conditions of our
system and/or experimental results that support or dismiss it. The
uncommon properties of the 2D FLG,21 supported on nonzero mass
carriers, are not expected to manifest themselves and have yet to be
understood. Moreover, on such grounds it is cumbersome to clarify
to date if a formally derived Q1D Hamiltonian for an MLG (so far,
we are not aware of any) will be equivalent for both electrons and
holes in a single shoot. Taking into account all these considerations,
together with the fact that to travel into the under-QB region,
Dirac fermions tunnel as free holes30 (sometimes by means of Klein
tunneling), we substitute ĤBR in (4). First, we make a departure
from a Rashba Hamiltonian for holes28

ĤSOI-R ¼ �iα
k̂2�
k̂þ

σþ � k̂2þ
k̂�

σ�

" #
� iβ k̂3�σþ � k̂3þσ�

h i
, (5)

where k̂+ ¼ (k̂x + ik̂y), σ+ ¼ 1
2 (σx + iσy), α is the linear Rashba

parameter, and β is the cubic Rashba parameter (both of them are
material-dependent constants). Finally, after some algebra, and by
zeroing the components accompanying k̂y , we obtain an effective
Q1D Hamiltonian for the hole branch29

ĤSOI-R ¼ (� iα@x þ iβ@3
x )σy , (6)

where @x ¼ @
@x. Thus, expression (6) is used instead of ĤBR in (4) to

obtain partial answers to the question related to the main purpose of
the present study (see Sec. I), a question that will be addressed soon.

C. Hybrid Hamiltonian: Finite differences scheme

The hybrid Hamiltonian to deal with for achieving the envi-
sioned goals outlined in Sec. I, for the physical-system device
depicted in Fig. 2, will be the summation of the pristine MLG
Dirac-like Hamiltonian (1), with the components k̂y ¼ 0, the
SOI-R Hamiltonian (6), and the potential V(x) representing our
QB created by gating.30 This leads to the crucial equation

Ĥ ¼ Ĥ0 þ ĤSOI-R þ V(x)I2

¼ V(x) �i�hvf @x � α@x þ β@3
x

�i�hvf @x þ α@x � β@3
x V(x)

� �
, (7)

where I2 stands for the second order identity matrix. Let us con-
sider a square QB (see Fig. 3, green solid line), in the interval x [
[700, 800] A

�
of thickness Δxb ¼ 100A

�
and given by

V(x) ¼ V0H(x), with H(x) being the Heaviside step function. We
impose H(x) ¼ 1; 8x [ [700, 800] A

�
and H(x) ¼ 0, otherwise. For

the time being, we consider that the hybrid Hamiltonian (7)
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captures the essential physics of our envisioned problem, as we
shall demonstrate in Sec. IV. We proceed further by discussing the
time-dependent Dirac-like equation in a Q1D space, though
writing it as an evolution equation within the standardized
Schrödinger frame. The time evolution in the free (scattering)-
space region, resulting from the diffusion under arbitrary initial
conditions, can be an excellent workbench for the finite difference
scheme. So, for the mathematical procedure, we turn the Q1D
Dirac-like equation (7), within the framework of the familiar
Schrödinger model, into a discrete formulation

(ĤΨ(x, t))nj ¼ {�h
@

@t
Ψ(x, t)nj , (8)

where n is the discretization variable of time, while j is the discreti-
zation variable of space, so that t ! nδt and x ! jδx; for n ¼
1, 2, . . . , N and j ¼ 1, 2, . . . , J , respectively. The elemental quan-
tity δx(δt) quotes the space(time) minimal step of the grid. The
general solution for (8) can be proposed in the form,

Ψ(x, t) ¼ Û(t, t0)Ψ(x, t0), (9)

where Û(t, t0) is the time-evolution operator, which is defined as

Û(t, t0) ¼ e
i
�hδtĤ : (10)

First, it is convenient to use Cayley’s approach,28

Û(t, t0) ¼ 2I2
I2 þ 1

2
{δt
�h Ĥ

� I2, (11)

and by substituting (11) in (9), we obtain

Ψ(x, t) ¼ Φ(x, t0)�Ψ(x, t0), (12)

where

Φ(x, t0) ¼ 2Ψ (x, t0)

I2 þ 1
2
{δt
�h Ĥ

: (13)

It is clear from (13) that

2Ψ(x, t0) ¼ Φ(x, t0)þ {δt
2�h

ĤΦ(x, t0), (14)

which is solved for Φ(x, t0), to be further substituted in (12),
whose discrete form can be cast as

Ψnþ1
j ¼ Φn

j �Ψn
j : (15)

Now, we impose the initial boundary conditions,

Ψn¼0
j¼0 ¼ Ψn¼0

j¼J ¼ 0, (16)

to calculate the wave functions along the Q1D nanoribbon,
sketched in Fig. 2 (yellow strip). The standard Taylor development
is performed for functions evaluated in j� 2; j� 1; jþ 1, and
jþ 2. Afterward, we solve the equation system for the derivatives
and we get

ψ 0
j ¼

ψ j�2 � 8ψ j�1 þ 8ψ jþ1 � ψ jþ2

12δx
, (17)

ψ 00
j ¼

�ψ j�2 þ 16ψ j�1 � 30ψ j þ 16ψ jþ1 � ψ jþ2

12δx2
, (18)

ψ 000
j ¼ �ψ j�2 þ 2ψ j�1 � 2ψ jþ1 þ ψ jþ2

2δx3
, (19)

ψ 0000
j ¼ ψ j�2 � 4ψ j�1 þ 6ψ j � 4ψ jþ1 þ ψ jþ2

δx4
: (20)

By substituting (7) in (14), using (17)–(20), after adding and
subtracting both components of (14), we finally reach the crucial
equation systems,

2(ψAj þ ψBj) ¼ MAbP j�2 � 8MAbP j�1 þ (1þMV)P j þ 8MAbP jþ1 �MAbP jþ2 þMBaQj�2 �MCaQj�1 þMCaQjþ1 �MBaQjþ2 , (21)

2(ψAj � ψBj) ¼ �MBaPj�2 þMCaPj�1 �MCaPjþ1 þMBaPjþ2 �MAbQj�2 þ 8MAbQj�1 þ (1þMV)Qj � 8MAbQjþ1 þMAbQjþ2 , (22)

where M ¼ ({δt)=(2�h), Ab ¼ (Aa)=(12δx), Aa ¼ �{�hv f , Ba ¼ (αδ2x þ 6β)=(12δ3x), and Ca ¼ (2αδ2x þ 3β)=(3δ3x). The quantities we are
looking for are P j and Qj, since

f(A,B)j ¼
1
2

P j + Qj
	 


: (23)

Considering that we have P j and Qj in both equation systems (21) and (22), they can be treated as (J � 1) vectors, as well as the terms
2(ψAj þ ψBj) and 2(ψAj � ψBj). Besides, for convenience, the physical system’s constants will be embedded in the (J � J) matrices MA,B,
which are 5-diagonal ones of the form
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MA ¼

(1þMV) 8MAb �MAb 0 0 . . . 0
�8MAb (1þMV) 8MAb �MAb 0 . . . 0
MAb �8MAb (1þMV) 8MAb �MAb . . . 0

0 . .
. . .

. . .
. . .

. . .
.

0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . MAb �8MAb (1þMV) 8MAb �MAb

0 . . . 0 MAb �8MAb (1þMV) 8MAb

0 . . . 0 0 MAb �8MAb (1þMV)

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

(24)

and

MB ¼

0 MCa �MBa 0 0 . . . 0
�MCa 0 MCa �MBa 0 . . . 0
MBa �MCa 0 MCa �MBa . . . 0

0 . .
. . .

. . .
. . .

. . .
.

0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . MBa �MCa 0 MCa �MBa

0 . . . 0 MBa �MCa 0 MCa

0 . . . 0 0 MBa �MCa 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (25)

Thus, we define

Ψþ ¼ MA � P þMB � Q, (26)

Ψ� ¼ MT
B � P þMT

A � Q, (27)

and after a not too hard algebra, we can obtain

Q¼ MT
A �MT

B � M�1
A �MB

� �	 
�1� Ψ� �MT
B � M�1

A �Ψþ
� �	 


, (28)

P ¼M�1
A � Ψþ �MB �Qð Þ: (29)

In short, to simulate the time evolution, resulting from the
quantum diffusion (scattering) of Dirac fermions, whenever they
move in the free(QB) regions of a Q1D MLG nanoribbon of the
device shown in Fig. 2, we first solve (28) and (29) for Pj and Qj,
respectively, next we find fAj and fBj from (23), to substitute after-
ward in (15). The latter procedure is a cyclic (n ¼ 1, . . . , N)-time
loop for each of the (j ¼ 1, . . . , J)-space points.

IV. DISCUSSION OF RESULTS

Let us start exposing the use of the hybrid Hamiltonian (7),
within the finite difference scheme developed in Sec. III C, for the
examination of several pseudospin-related effects during the
quantum transport of a 1DGWP along a Q1D MLG narrow nano-
ribbon embedded into the spintronic device shown in Fig. 2.
Wherever possible, a comparison with available experimental or

numerical results will be made. We have gathered worldline pictures
of the envisioned Dirac-fermion quantum diffusion (scattering) for
several physical conditions of interest, and the correspondent multi-
media are available to be consulted and/or downloaded from a per-
manent weblink (see Ref. 31). For the timeline animations, we used
a box of length L ¼ 500A

�
(see the abscissa axis of Fig. 3) and a

simulation time of 50 fs. The centroid of the Gaussian wave packet
was allocated at x0 ¼ 250A

�
, while the dispersion size was fixed as

σ ¼ 50A
�
, and a barrier thickness of Δxb ¼ 100A

�
was taken. It is

important to mention that, for the quantum diffusion (scattering) to
be stable, we must follow the requirement

δt � δx2

2
, (30)

which as an added bonus becomes unexpectedly relevant to our study,
provided we have demonstrated its influence to resolve several fine fea-
tures of the wave-packet diffusion to compare with.8 For describing
the dynamics of the Dirac fermions in an MLG-based Q1D nanorib-
bon (see Fig. 2), we have represented them by a 1DGWP defined as

Ψ(x, t ¼ 0) ¼ ξ

σ

ffiffiffi
1
π

r
e�

(x�x0)
2

2σ2 e{k(x�x0) , (31)

whose group velocity decreases proportionally to δt, remaining
shorter than light speed. The following set of the real-spin shape

ξ¼ 1
0

� �
, ξ¼ 1ffiffiffi

2
p 1

1

� �
, ξ¼ 1ffiffiffi

2
p 1

i

� �
, and ξ¼ 1ffiffiffi

2
p 1

eiπ=4

� �
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unambiguously determines the four different cases of the initial
pseudospinor configuration (PSC) we are interested in, for compar-
ison with a prior study,8 pursuing a validation of our model.

In this section, we divide the discussion into three parts.
First, there is a semiquantitative comparison for a Dirac-
fermion 1DGWP in the free space between our results and
those published elsewhere.8 Second, we analyze the dynamics
of the 1DGWP during its drift, when sampling in the vicinity
of the Dirac points K and K 0 (see Fig. 1), as well as far from
them. Finally, we try to study whether the under-barrier
biased SOI-R interplays during the Dirac-fermion interaction
with the QB. We underline the usefulness of expression (30)
(directly derived from our model) to stabilize the quantum
diffusion (scattering) in the free-space (under-barrier) regions,
respectively, and to resolve several fine features of the wave-
packet diffusion to compare with.8 Readers could verify the
remarkably good qualitative agreement of all Fig. 4 panels,
with those of Ref. 8, for the same initial pseudospin configu-
rations. Notice that we were able to accurately reproduce even
the small shoulders.

In Fig. 4, we show the timeline evolution of the 1DGWP in
the free-space region [V(x) ¼ 0, α ; β ¼ 0], resulting from the
quantum diffusion of Dirac fermions modeled by the 1DGWP
(31), along the Q1D MLG narrow nanoribbon of the proposed
device (see Fig. 2). We have assumed a width less than the lattice
parameter. As can be seen, the 1DGWP spreads and ultimately
divides into a couple of variable-shape sub-1DGWPs, which drift
apart with respect to the center of the box, as expected.8 In all
panels, the probability density of each pseudospinor component
ρA,B ¼ jψA,Bj2 is represented with a red-solid (blue-dashed) line.
Meanwhile, the conservation law ρ ¼ jψAj2 þ jψBj2 is depicted
with a purple-dotted line. Next, a case-by-case comparison between
our data with several graphs obtained by Frolova et al.8 for an iden-
tical PSC set is presented and a good qualitative agreement is
achieved. For the sake of accuracy, we first “cut” their 3D wave
packet (WP) along their x=d axis at y=d ¼ 0 (see Fig. 1 in Ref. 8).
Thereby, panels (a)–(d) show a projection of the 1DGWP (31)

worldline on that cut plane. In panel (a), with ξ ¼ 1
0

� �
, the

1DGWP (31) turns divided into two smaller sub-1DGWPs with
the same amplitude that begin moving in opposite directions (see

Fig. 1 in Ref. 8). In panel (b), when ξ ¼ 1ffiffi
2

p 1
1

� �
, the 1DGWP

becomes divided differently, but it continues to move in the posi-
tive direction of x (see Fig. 3 in Ref. 8). Panel (c) plots the evolution

for the PSC ξ ¼ 1ffiffi
2

p 1
{

� �
and the split sub-1DGWP is similar in

the amplitude of jψA,Bj2, though slightly less than that of panel (a)
(see Fig. 5 in Ref. 8). Finally, panel (d) displays the case for PSC

ξ ¼ 1ffiffi
2

p 1
eiπ=4

� �
, and the WP is divided into two sub-1DGWPs;

however, the one on the left is smaller compared to the one on
the right (see Fig. 7 in Ref. 8). It is worthwhile to stress that
inner-side small ripples were detected solely under the fulfillment
of (30), by fixing a time partition of cδt with c [ [0:5, 1]. The
most important point to note here is that when the 1DGWP is

FIG. 4. Worldline dynamical drift of our 1DWGP in the free-space region
[V (x) ¼ 0, α ; β ¼ 0] at t ¼ 20 fs and given values of ξ, for a qualitative com-
parison with the wave packet at a similar time interval and with the same ξ config-
urations as in Ref. 8. On panels (a) and (c), the 1DGWP spreads and ultimately
divides into a couple of identical sub-1DGWPs with two local maxima. Panel (b)
shows a drifting 1DGWP, whose height is bigger compared with (a), due to the
conservation of probability density. Finally, panel (d) presents split sub-1DGWPs
as in panel (a), but this time, the one at the right has the biggest ρ.
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located at point K of the reciprocal lattice (kx,y ¼ 0) (see Fig. 1),
no oscillations of jψA,Bj2 were detected. Multimedia of the
Dirac-fermion worldline dynamic in the free space are available in
a permanent weblink (see Ref. 31).

Figure 5 plots the foremost contribution of the present study,
i.e., the stable evidence of antiphase oscillations in the probability
density time-distribution for each pseudospinor component jψA,Bj2
of the corresponding sublattice state (3), when the 1DGWP travels
along the Q1D device of Fig. 2 in the free-space region. These oscil-
lations resemble those of the wiggling motion discovered by
Schrödinger,6 but in this case for ρA,B ¼ jψA,Bj2. Thus, we have
named the phenomenology described here as pseudospinorial
Zitterbewegung effect [see panels (e), (g), and (h)]. In all panels, we
have represented jψAj2 with a red-solid line and jψBj2 with a blue-
dashed one. For the selected parameters’ rank, the conservation
requirement ρ ¼ jψAj2 þ jψBj2 was carefully verified and displayed
by a purple-dotted line everywhere. First, the 1DGWP was allo-
cated at the Dirac point K (see Fig. 1), afterward it was released
to drift along the 500A

�
L-length box described above. No oscilla-

tions of jψA,Bj2 were detected at all, but despite this, we explored
several PSCs [see left-column panels (a)–(d)]. Interestingly, by now
replacing the 1DGWP center mass away from K , clear jψA,Bj2 oscil-
lations were detected when it drifts in the box, whose shape
strongly depends on the initial PSC, as can be clearly seen from

right-column panels (e), (g), and (h). Indeed, for ξ ¼ 1
0

� �
[see

panel (e)], jψA,Bj2 maximizes (minimizes) at t ¼ 0, meanwhile they

start from the same amplitude for ξ ¼ 1ffiffi
2

p 1
{

� �
[see panel (g)].

Panel (h) shows a similar feature to the latter one, though with a

reduced amplitude of jψA,Bj2 for ξ ¼ 1ffiffi
2

p 1
e{π=4

� �
. Having accom-

plished a semiempirical method (32)—to be detailed described
below—and taking all the values of Table I into account, the simu-
lation results of right-column panels (e)–(h) were confirmed and
accurately described by this methodology. Since the constants D
and E do not nullify simultaneously for all PSCs (see Table I), the
sinusoidal-dependent function Us(t) in (32) survives, yielding the
PZBE oscillations to rise [see right-column panels (e), (g), and (h)].
During numerical explorations, unexpectedly for a fully symmetric

PSC ξ ¼ 1ffiffi
2

p 1
1

� �
[even at kx(y) ¼ 0:09(0) A

� �1
], the PZBE vanishes

[see panel (f )]. Again, after the computation with (32), this is not
surprising given the fact that a simultaneous zeroing of the parame-

ters D and E for ξ ¼ 1ffiffi
2

p 1
1

� �
(see Table I) leads the periodic func-

tion in (32) to nullify, and thereby no oscillations can be
expected at that PSC. Good qualitative agreement with previous
reports of the ZBE in graphene1,8,13,14 has been achieved, because
a robust transient character of the oscillations, with a decay time
of about 10:5 fs, was found in all cases under examination here.
Multimedia for the trembling dynamics of Dirac fermions in the
free space are available in a permanent weblink (see Ref. 31), and
thus the rise of the PZBE via jψA,Bj2 antiphase oscillations can be
more explicitly observed in colored worldline pictures.

Figure 6 is devoted to demonstrate the dependence of PZBE
frequency on kx(y) during the passage of the 1DGWP in the free
space. Notice the difference in comparison with the right-column
panels: (e), (g), and (h) of Fig. 5, i.e., the higher the kx(y) values, the

FIG. 5. Qualitative comparison for probability density jψA,Bj2 as a function of
time, at kx,y ¼ 0 (left-column panels), with that of kx(y) ¼ 0:09(0) A

� �1
(right-

column panels), for the free-space case. Panel (a) shows finite ρA ¼ jψAj2
values solely, because ρB ¼ jψBj2 zeroed. Panels (b)–(f ) display an identical
evolution of ρA,B, despite the different ξ, though starting with the same
probability-density amplitude. Importantly, panels (e), (g), and (h) show the anti-
phase oscillations of ρA,B, named after PZBE.
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smaller the jψA,Bj2 oscillation period. For instance, by letting grow
kx in about one order, the period diminishes almost to a half [see
Fig. 5(h) for the purposes of comparison]. We realize that effects
such as this k-dependence in the PZBE play an important role in
the modifications of its oscillation period. There is no any straight-
forward derivation of this behavior from the theoretical model
presented above (see Sec. III). It was then necessary to obtain an
explicit analytic equation to fit the observed k-dependent oscillating
patterns of the PZBE. Performing a semiempirical numerical
method on testing grounds, we obtained a function of the time that
describes quite accurately the oscillating behavior for each ρA,B ¼
jψA,Bj2 component and can be expressed as follows:

ρsξ(500, t) ¼ Us(t)ρsξ(500, 0), (32)

where Us(t) ¼ 1
2 +C sin (Dt þ E)þ 1½ � eFt2 , for s ¼ A, B, respec-

tively. It is worthwhile stressing that procedure (32), although not
an explicit function of k, is well chosen and reliably reproduces the
k-dependent PZBE oscillating features of Fig. 6 (see red-solid and
blue-dashed lines for each sublattice component). The logic behind
Us(t) can be interpreted as a comprehensive analog with the
time-evolution-operator solution in (9), but for the probability
density. In that sense, (32) emerges as a valid model for describing
the dynamic properties of the envisioned 1DGWP. By summing up
both expressions of Us(t) in (32), we get

ρξ(500, t) ¼ eFt
2
ρξ(500, 0), (33)

which is a practical and simplified expression for the envelope
probability density ρ ¼ jψAj2 þ jψBj2 (see the purple-dotted line of
Figs. 5 and 6), though preserving the time-evolution analogy com-
mented above.

If one releases the 1DGWP in the vicinity of the Γ point (see
Fig. 1), the group velocity diminishes and tends rapidly to zero by
approaching it. In other words, the 1DGWP becomes almost
static; while the frequency of PZBE oscillations is so high that it
would seem at first sight that there are no oscillations at all (see
animations of Ref. 31). We numerically verified that the parame-
ters D and F are the ones that behave as certain functions of kx .
Indeed, D is directly proportional to kx , while F shows an inverse
proportionality to it. Both of them clearly define the periodic and
the envelope parts, respectively, of time-evolution operatorlike
functions (32) and (33). Thus, the frequency increment when kx
grows (by approaching the Γ point), together with the robust
decay of about 10.5 fs, is very likely because, first, D having units

of (fs�1) belongs to the harmonic function in (32); and second, the
exponential part of (33) depends on F, which is in addition, a neg-
atively defined quantity (see Table I). Undoubtedly, a much deeper
theoretical analysis is achievable as well as required on this rele-
vant PZBE k-dependence. However, we do not believe it would sig-
nificantly modify our results, and in all likelihood, it would just
follow the trends we show here, albeit some refinement could be
expected specially in the vicinity of the high-symmetry points of
reciprocal space.

To this end, the main findings discussed from Figs. 5 and 6
are highlighted, i.e., the undoubted evidence of the PZBE during
the passage of Dirac fermions along a Q1D channel, formed by a
narrow nanoribbon sandwiched in a novel top-gated structure (see
Fig. 2), and the k-dependent tunable behavior of the PZBE. Both of
them are strictly independent of the terms V(x) and ĤSOI-R in (7)
because they have been nullified, reinforcing, in this way, the essen-
tial link of these events to the pristine MLG Hamiltonian Ĥ0 (1)
presented in Sec. III A.

Finally, let us turn to the third part of this section, in which
we will try to provide evidence on whether or not the under-barrier
biased SOI-R according to (7) influences the Dirac fermions during
their tunneling throughout the QB.

Figure 7 displays what happens with the 1DGWP after
t ¼ 12:5 fs, considering the interaction with a QB under SOI-R. We
can observe for kx � 0 and ky ¼ 0 (left-column panels) that Dirac

TABLE I. Numerical estimation for coefficients of (32) for several initial PSCs at kx(y) ¼ 0:09(0) A
� �1

. RMSU stands for the root mean square uncertainty.

Constant ξ ¼ 1
0

� �
ξ ¼ 1ffiffi

2
p 1

1

� �
ξ ¼ 1ffiffi

2
p 1

i

� �
ξ ¼ 1ffiffi

2
p 1

eiπ=4

� �

C 0:00 0:00 0:00 0:71
D(fs�1) 20:00 0:00 20:00 20:00
E π=2 0:00 0:00 0:00
F(fs�2) �0:04 �0:04 �0:04 �0:04
RMSU 6:27� 10�6 1:24� 10�7 1:91� 10�6 2:20� 10�5

FIG. 6. PZBE through the evolution of the probability density jψA,Bj2 as a func-
tion of time during the first 12.5 fs of the 1DGWP drift in the free space, at

kx(y) ¼ 0:18(0) A
� �1

and ξ ¼ 1ffiffi
2

p 1
e{π=4

� �
.
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fermions do not interplay with the SOI-R biased QB in any percep-
tible way. Meanwhile, when kx(y) ¼ 0:09(0) A

� �1
(right-column

panels), one can see a weak splitting of the 1DGWP when it enters
the QB, jψBj2 being slightly above [see the blue-dashed line in
panel (d)], otherwise when leaving the QB, it is the component
jψAj2 that clearly goes up [see red-solid line in panel (e)]. Even if
these differences are quite small, between the cases without PZBE
(kx � 0 and ky ¼ 0) (see left-column panels of Fig. 5) and with
PZBE [kx(y) ¼ 0:09(0) A

� �1
] (see right-column panels of Fig. 5), the

output 1DGWP is the same. The latter has two possible interpreta-
tions: (i) From one side, the initial phase contributes to the average
velocity,8 and the incidence angle θ ¼ arctan (ky=kx) governs the
changes in 1DGWP scattering behavior.32 Then, we conclude
that the coordinates of movement we have assumed are those of
normal incidence to the QB, because Dirac fermions collide it
under θ ¼ 0, for kx ¼ 0:09A

� �1
and ky ¼ 0. Thus, Klein’s paradox

is at play here and the tunneling becomes perfect.32 (ii) On the
other hand, it means that the QB and the SOI-R do not affect sub-
stantially the 1DGWP dynamics of the Dirac fermions during their
passage throughout the SOI-biased scatterer. Thus, the assessment

of the SOI-R weakness in graphene3 is now reassured in the study
of the PZBE for a Q1D MLG configuration, because the way it gets
affected by the SOI-R is so far almost unnoticeable. Pursuing
further confirmations, we simulated the dynamics of an identical
1DGWP in MLG quantum wells. We have detected noticeable evi-
dence of the SOI-R modulation on the PBZE that is not shown
here, due to the presence of several inconsistencies of the finite-
differences method at the box edges, yet to be debugged. This may
reopen the belief about the potential existence of an interplay
between the ZBE and the SOI-R in graphene, following the depen-
dence of the ZBE on the strength of SOI-R in III–V semiconduct-
ing quantum wells.9

Figure 8, for the purpose of illustration, exposes an extended
sequence of the 1DGWP time evolution inside a 100 Å length sur-
rounding box, to present evidence for a perfect backscattering
(anti-Klein tunneling) of the 1DGWP at the QB under SOI-R [see
panel (h) and animations of Ref. 31]. On panels (a)–(d), a similar
behavior as the one discussed in Fig. 7 (Klein tunneling) can be
seen and we have included them for the sake of completeness.
Panel (e) plots the first interaction with the QB after the initial

FIG. 7. Klein tunneling. We display a
qualitative comparison of the collision
with a QB of height V0 ¼ 0:3 eV, thick-
ness Δxb ¼ 100 A

�
, Rashba linear

parameter α ¼ 0:4 eV A
�
, and Rashba

cubic parameter β ¼ 0:3 eV A
� 3
. We

have taken kx � 0 and ky ¼ 0 (left-
column panels) and kx(y) ¼
0:09(0) A

� �1
(right-column panels).

Panels (a) and (d) display ρA,B at
t ¼ 25 fs, when the first interaction of
the 1DGWP with the QB occurs,
showing almost no change in ρA,B
[ panel (a)] and a small ripple in ρA,B
[ panel (d)]. Panels (b) and (e) plot at
t ¼ 35 fs, the second 1DGWP-QB
interaction. Though almost impercepti-
ble, each component ρ(B=A) appears
slightly above [panel (b)/(e), respec-
tively]. Finally, panels (c) and (f ) show
the packages at t ¼ 25 fs, when they
have passed through the QB, without
any apparently difference at the box
edge.
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right-hand moving (RHM) sub-1DGWP becomes reflected by the
surrounding box wall. Notice some small portions of the
sub-1DGWP due to multiple reflections with the QB and the box.
They are traveling one way and the other way around at the same
time, as they can be disregarded in most of this analysis because
they somewhat represent a cavity noise. In panel (f ), the backscat-
tered RHM sub-1DGWP is tresspassing the QB moving to the left,
while the initial left-hand moving (LHM) sub-1DGWP evolves to
the right. Panel (g) shows both sub-1DGWPs overlapped and the
noise allocated to both of their sides. Next, on panel (h), there is an
appealing total backscattering of the rearranged RHM sub-1DGWP
with the QB. For a further understanding of the observed perfect
reflection, we recall that ultimately the QB is a resonant cavity,
thereby there should exist θ values, for which transmission or
reflection maximizes. To support the last point, we assume that
unlike massless chiral fermions exhibiting Klein tunneling (conser-
vation of chirality pseudospin index outside-inside the QB),33

anti-Klein tunneling occurs for chiral fermions with effective mass,
due to particles transforming into holes inside the barrier carrying
imaginary momenta (nonconservation of chirality pseudospin
index outside-inside the QB).34 We suggest that the SOI-R triggers
the precession mechanism of the real spin in the under-QB region,
allowing then pseudospin to alternate its chirality index. In the case
of the anti-Klein tunneling, which should be suppressed in MLG,33

by adding a mass-dependent term in the Hamiltonian (7), the
pseudospin components of (3) could be coupled, causing the chi-
rality conservation to break.30 Meanwhile, the LHM sub-1DGWP
shape is being distorted by the cavity noise. Panel (i) exhibits the
LHM sub-1DGWP collision with the box wall, when the perfect
backscattered RHM sub-1DGWP is traveling to the left. On panel
( j), they are overlapped one more time, now at the position
x � 120A

�
. After this, panels (k) and (l) demonstrate a behavior

quite similar to that of panels (a)–(d), except for the sub-1DGWP
shape distortion, boosted by the cavity noise. In fact, the perfect
tunneling and the perfect backscattering that we found for a Q1D
MLG nanoribbon have also been reported recently for 2D MLG.34

Indeed, the authors find that by tuning a strong SOI-R in 2D MLG,
the transmission of Dirac fermions through a potential barrier can
start from Klein tunneling and move to anti-Klein tunneling
(perfect backscattering). This excellent agreement with the men-
tioned results,34 despite several differences between both theoretical
modeling and physical setups, shows unequivocally that the pro-
posed device is reliable and our modeling to deal with it correctly
captures the essential physical phenomena in MLG systems.

V. CONCLUSIONS

The introduced spintronic device based on a Q1D MLG narrow
nanoribbon embedded between a hBN film and a SiO2 insulating
substrate is an acceptable workbench that may encourage new experi-
mental directions. The theoretical model we have developed, for
describing spin-dependent quantum transport of Dirac fermions
confined into the introduced Q1D device, correctly reproduces
expected features of prior studies.8 Most importantly, our main result
predicts the pseudospinorial Zitterbewegung effect to arise in such
Q1D MLG devices. Good qualitative agreement with previous
reports of the ZBE in graphene1,8,13,14 has been achieved, because a

FIG. 8. Anti-Klein tunneling. We show a complete temporal evolution of the WP

with ξ ¼ 1
i

� �
colliding with a barrier of height V0 ¼ 0:3 eV, thickness

Δxb ¼ 100 A
�
, Rashba linear parameter α ¼ 0:4 eV A

�
, and Rashba cubic parame-

ter β ¼ 0:3 eV A
� 3
; with kx � 0 and ky ¼ 0. The Klein tunneling of the 1DGWP

[panels (a) t ¼ 0; (b) t ¼ 25 fs, and (c) t ¼ 35 fs] as well as its perfect backscat-
tering [panels (g) t ¼ 100 fs; (h) t ¼ 115 fs, and (i) t ¼ 135 fs� can also be seen.
In panel (d), we see the 1DGWP colliding at t ¼ 60 fs, with the edges of the box,
but showing a lot of cavity noise due to the complete reflection. Panels (e) t ¼ 75 fs
and (f ) t ¼ 85 fs display the third and fourth 1DGWP-QB interactions, respectively.
Panel ( j) plots the overlap of both halves of the 1DGWP after the perfect backscat-
tering, at t ¼ 170 fs. Panel (k) shows both portions of the 1DGWP at t ¼ 200 fs,
and one can observe that they are no longer Gaussian. This can be better seen in
panel (l), when the sixth 1DGWP-QB interaction appears at t ¼ 225 fs.
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robust transient character of the PZBE oscillations, with a decay time
of about 10:5 fs, was found in all cases under examination here.
Individual features in graphene electronic devices need to be con-
trolled accurately enough.16 One of our findings is precisely the dem-
onstration that several features of the PZBE become tunable, even its
complete disappearance, as a function of the quasimomentum and
the initial pseudospin configuration. Furthermore, when sampling in
the vicinity of the Γ and Dirac points, we observed that the frequency
of the PZBE and the 1DGWP group velocity depend on their close-
ness to these high symmetry points. For example, when k ! Γ, the
group velocity ! 0, while the frequency maximizes. We do not
detect any perceptible influence of the SOI-R on the PZBE features,
when the Dirac fermions tresspass the QB. Nonetheless, this assess-
ment is not conclusive yet due to the noticeable modulation of the
SOI-R over the PZBE that we observed (to be yet debugged) for mul-
tiple quantum wells inside a similar Q1D device. Finally, we have
captured evidence of the familiar Klein tunneling and the unusual
anti-Klein tunneling, whose interplay for 2D MLG under tunable
SOI-R was reported recently.34 Taking into account all these concrete
results, in particular, the last one, we conclude that the proposed
device is reliable and our theoretical modeling to deal with it cor-
rectly captures the essential physical phenomena in MLG systems.
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